Ground state properties of the Schrodinger model of ferromagnetism

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 7308
(http://iopscience.iop.org/0301-0015/7/2/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:56

Please note that terms and conditions apply.

Ground state properties of the Schrödinger model of ferromagnetism

D Kim \dagger and R I Joseph \dagger
Department of Physics, King's College, University of London, Strand, London WC2R 2LS, UK

Received 4 July 1973

$$
\begin{aligned}
& \text { Abstract. We consider a system described by the hamiltonian } \\
& \qquad \mathscr{H}=-\sum_{i, j} J_{i j} P_{i j}-\sum_{\substack{i . j, j, k, l, l \\
i \neq k, j \neq k, l}} J_{i j k l} P_{i j} P_{k l}-\ldots-g \mu_{\mathrm{B}} H \sum_{i} S_{i z}+D \sum_{i} S_{i z}^{2} \\
& \text { where } P_{i j} \text { is the spin } S \text { Schrödinger exchange operator, } H \text { is an external magnetic field and } \\
& D \text { the single-ion anisotropy constant, and study its ground state properties. In particular for } \\
& S=1 \text { at } T=0 \text { we find that the magnetization } m=0 \text { for } D>g \mu_{\mathrm{B}}|H| \text { while for } D<g \mu_{\mathrm{B}}|H| \text {, } \\
& m=H /|H| \text {, the ground states being non-degenerate. }
\end{aligned}
$$

1. Introduction

Consider a system of N spin S particles on a lattice characterized by the hamiltonian

$$
\begin{equation*}
\mathscr{H}=\mathscr{H}_{\mathrm{SI}}+\mathscr{H}_{\mathrm{EX}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{H}_{\mathrm{SI}}=-g \mu_{\mathrm{B}} H \sum_{i=1}^{N} S_{i z}+D \sum_{i=1}^{N} S_{i z}^{2} . \tag{2}
\end{equation*}
$$

The latter two terms represent the Zeeman and single-ion anisotropy contributions, respectively. Let $|\phi\rangle=\left|m_{1} m_{2} \ldots m_{N}\right\rangle \equiv\left|\left\{m_{i}\right\}\right\rangle$ be a normalized state such that

$$
\left.\begin{array}{l}
S_{i z}|\phi\rangle=m_{i}|\phi\rangle \tag{3}\\
\left\langle\phi \mid \phi^{\prime}\right\rangle=\delta_{\phi \phi^{\prime}}
\end{array}\right\} \quad i=1,2, \ldots, N
$$

m_{i} can take on the values $-S, \ldots, S$. We define a permutation operator p_{r} by

$$
\begin{equation*}
p_{r}|\phi\rangle=\left|p_{r} \phi\right\rangle \equiv\left|\phi^{\prime}\right\rangle \tag{4}
\end{equation*}
$$

where $p_{r} \phi$ means that the permutation p_{r} is performed on a sequence $\phi=\left\{m_{i}\right\}$ to give the new sequence $\phi^{\prime}=\left\{m_{i}^{\prime}\right\}$. We take for the operator $\mathscr{H}_{\mathrm{EX}}$ the specific form

$$
\begin{align*}
& \mathscr{H}_{\mathrm{EX}}=-\sum_{p_{r} \in \mathcal{S}_{N}} J_{p_{r}}\left(p_{\mathrm{r}}-I\right) \equiv-\widetilde{\mathscr{P}} \tag{5}\\
& J_{p_{r}} \geqslant 0
\end{align*}
$$

where S_{v} denotes the set of all permutations such that $p_{r}^{2}=I$. If $P_{i j}$ denotes the \dagger On leave from the Department of Electrical Engineering. The Johns Hopkins University, Baltimore, Maryland.

Schrödinger exchange operator (Schrödinger 1941) for spin S which permutes the spin states of the two spins i and j, equation (5) is equivalent to the form

$$
\begin{equation*}
\widetilde{\mathscr{P}}=\sum_{i, j} J_{i j} P_{i j}+\sum_{\substack{i, j, k, l \\ i \neq k, l \\ j \neq k, l}} J_{i j k l} P_{i j} P_{k l}+\ldots \tag{6}
\end{equation*}
$$

If we were to set

$$
\begin{array}{rlrl}
J_{i j} & =J & & \text { if } i, j \text { are nearest neighbours } \\
& =0 & & \text { otherwise } \\
J_{i j k l} & =0 & \ldots,
\end{array}
$$

then \mathscr{H} reduces to the previously studied Schrödinger model of ferromagnetism (Kim and Joseph 1973a, b, 1974). In general $P_{i j}$ is a polynomial of degree $2 S$ in $S_{i} . S_{j}$:

The purpose of the present paper is to study rigorously the ground state ($T=0$) properties of the system described by equations (1), (2) and (5). In § 2 general properties of the matrix \mathscr{P} are studied while in $\S 3$ these properties are used to consider the ground state energy of the system. In $\S 4$ we conclude by showing for the case $S=1$ that the magnetization $m=\left\langle\Sigma_{i} S_{i z}\right\rangle / N$ and quadrupolar order parameter $x=\left\langle\Sigma_{i} S_{i z}^{2}\right\rangle / N$ are related by $x=|m|$. In particular for $D>g \mu_{\mathrm{B}}|H|, m=x=0$ while for $D<g \mu_{\mathrm{B}}|H|$, $|m|=x=1$. For these situations the ground state is non-degenerate. When $D=g \mu_{\mathrm{B}}|H|$ no simple result is obtained due to a possible degeneracy in the ground state.

2. Matrix elements of $\tilde{\mathscr{P}}$

By its definition, p_{r} changes the configuration $\left\{m_{i}\right\}$ into the new configuration $\left\{m_{i}^{\prime}\right\}$ but it preserves the quantities $\Sigma_{i} m_{i}$ and $\Sigma_{i} m_{i}^{2}$. Hence we have

$$
\left[p_{r}, \sum_{i} S_{i z}\right]=\left[p_{r}, \sum_{i} S_{i z}^{2}\right]=0
$$

so that the hamiltonian commutes with both $\Sigma_{i} S_{i z}$ and $\Sigma_{i} S_{i z}^{2}$.
Let $S(Q, M)$ be the finite set of all the $\phi=\left\{m_{i}\right\}$ with the constraints $M=\Sigma_{i} m_{i}$, $Q=\Sigma_{i} m_{i}^{2}$. We then have

$$
\begin{align*}
& \sum_{i} S_{i z}|\phi\rangle=M|\phi\rangle \\
& \sum_{i} S_{i z}^{2}|\phi\rangle=Q|\phi\rangle \quad \text { when } \phi \in S(Q, M) .
\end{align*}
$$

Furthermore we have that

$$
\begin{equation*}
\left\langle\phi^{\prime}\right| \mathscr{H}|\phi\rangle \neq 0 \tag{8}
\end{equation*}
$$

only when ϕ, ϕ^{\prime} both belong to the same set $S(Q, M)$ since $p_{r}|\phi\rangle=\left|\phi^{\prime}\right\rangle \in S(Q, M)$ if $|\phi\rangle \in S(Q, M)$ for any p_{r}. Consequently we may restrict our attention to the quantities $\left\langle\phi^{\prime}\right| \widetilde{\mathscr{P}}|\phi\rangle$ where both $\phi \in S(Q, M)$ and $\phi^{\prime} \in S(Q, M)$.

Now if $\phi \neq \phi^{\prime}$ we have

$$
\begin{align*}
\left\langle\phi^{\prime}\right| \tilde{\mathscr{P}}|\phi\rangle & =\left\langle\phi^{\prime}\right| \sum_{p_{r} \in S_{N}} J_{p_{r}}\left(p_{r}-I\right)|\phi\rangle \\
& =\sum_{p_{r} \in S_{N}} J_{p_{r}}\left\langle\phi^{\prime}\right| p_{r}|\phi\rangle \\
& =\sum_{p_{r} \in S_{N}} J_{p_{r}}\left\langle\phi^{\prime} \mid p_{r} \phi\right\rangle . \tag{9}
\end{align*}
$$

But $\left\langle\phi^{\prime} \mid p_{r} \phi\right\rangle=1$ if $p_{r}|\phi\rangle=\left|\phi^{\prime}\right\rangle$, otherwise it is zero. Hence we immediately have the result

$$
\begin{equation*}
\left\langle\phi^{\prime}\right| \tilde{\mathscr{P}}|\phi\rangle \geqslant 0 \quad \text { if } \phi^{\prime} \neq \phi \tag{10}
\end{equation*}
$$

Consider now the quantity $P_{i j} \Sigma_{\phi \in S(Q, M)}|\phi\rangle$ where $P_{i j}$ is any transposition (i, j). Suppose that $\phi \in S(Q, M)$ and let $P_{i j}|\phi\rangle \equiv\left|\phi^{\prime}\right\rangle$. Then $\phi^{\prime} \in S(Q, M)$ also. Furthermore we see that $P_{i j}\left|\phi^{\prime}\right\rangle=P_{i j}^{2}|\phi\rangle=|\phi\rangle$. Here ϕ^{\prime} and ϕ may or may not be the same depending upon whether m_{i} and m_{j} are the same or not. Therefore we can always regroup the quantity $\Sigma_{\phi \in S(Q, M)}|\phi\rangle$ into the form

$$
\begin{equation*}
\sum_{\phi}|\phi\rangle=\sum_{\phi_{0}}\left|\phi_{0}\right\rangle+\sum_{\phi_{1}}\left(\left|\phi_{1}\right\rangle+\left|\phi_{2}\right\rangle\right) \tag{11}
\end{equation*}
$$

where ϕ_{0} denotes those $|\phi\rangle$ which remain unchanged under the $P_{i j}$ operator and $\left|\phi_{2}\right\rangle=P_{i j}\left|\phi_{1}\right\rangle$ with $\phi_{1} \neq \phi_{2}$. Applying the operator $P_{i j}$ to this form we see that

$$
\begin{equation*}
P_{i j} \sum_{\phi \in S(Q, M)}|\phi\rangle=\sum_{\phi \in S(Q, M)}|\phi\rangle \quad \text { for any } i, j . \tag{12}
\end{equation*}
$$

Now any p_{r} can be decomposed into products of the transpositions, e.g. equation (6), and for each of these transpositions, equation (12) holds. Hence we have

$$
\begin{equation*}
\operatorname{pr}_{r \in S} \sum_{\phi(Q, M)}|\phi\rangle=\sum_{\phi \in S S, M)}|\phi\rangle \tag{13}
\end{equation*}
$$

or upon performing the sum $p_{r} \in S_{N}$ and using the definition of the operator $\widetilde{\mathscr{P}}$,

$$
\tilde{\mathscr{P}}\left(\sum_{\phi \in S}(Q, M)=0 .\right.
$$

This immediately gives us the result

$$
\begin{equation*}
\sum_{\phi \in S(Q, M)}\left\langle\phi^{\prime}\right| \tilde{\mathscr{P}}|\phi\rangle=0 \quad \text { for all } \phi^{\prime} \tag{14}
\end{equation*}
$$

We know that

$$
\left\langle\phi^{\prime}\right| p_{r}|\phi\rangle= \begin{cases}1 & \text { if } p_{r}|\phi\rangle=\left|\phi^{\prime}\right\rangle \tag{15}\\ 0 & \text { otherwise }\end{cases}
$$

and that

$$
\langle\phi| p_{r}\left|\phi^{\prime}\right\rangle= \begin{cases}1 & \text { if } p_{r}\left|\phi^{\prime}\right\rangle=|\phi\rangle \tag{16}\\ 0 & \text { otherwise. }\end{cases}
$$

But since $p_{r}^{2}=I$ we have

$$
\langle\phi| p_{r}\left|\phi^{\prime}\right\rangle= \begin{cases}1 & \text { if } p_{r}|\phi\rangle=\left|\phi^{\prime}\right\rangle \tag{17}\\ 0 & \text { otherwise }\end{cases}
$$

Hence we find that

$$
\left\langle\phi^{\prime}\right| p_{r}|\phi\rangle=\langle\phi| p_{r}\left|\phi^{\prime}\right\rangle= \begin{cases}1 & \text { if } p_{r}|\phi\rangle=\left|\phi^{\prime}\right\rangle \tag{18}\\ 0 & \text { otherwise }\end{cases}
$$

Therefore

$$
\begin{align*}
\left\langle\phi^{\prime}\right| \tilde{\mathscr{P}}|\phi\rangle & =\left\langle\phi^{\prime}\right| \sum_{p_{r} \in \mathcal{S}_{N}} J_{p_{r}}\left(p_{r}-I| | \phi\right\rangle \\
& \left.=\sum_{p_{r} \in S_{N}} J_{p_{r} r}\left\langle\phi^{\prime}\right| p_{r}|\phi\rangle-\left\langle\phi^{\prime} \mid \phi\right\rangle\right) \\
& =\sum_{p_{r} \in \mathcal{S}_{N}} J_{p_{r}}\left(\langle\phi| p_{r}\left|\phi^{\prime}\right\rangle-\left\langle\phi \mid \phi^{\prime}\right\rangle\right) \\
& =\langle\phi| \sum_{p_{r} \in \mathcal{S}_{N}} J_{p_{r}}\left(p_{r}-I\right)\left|\phi^{\prime}\right\rangle \\
& =\langle\phi| \mathscr{\mathscr { P }}\left|\phi^{\prime}\right\rangle . \tag{19}
\end{align*}
$$

Hence we see that $\langle\phi| \widetilde{\mathcal{P}}\left|\phi^{\prime}\right\rangle$ is a real, symmetric, finite (with dimension equal to the number of elements in $S(Q, M)$) matrix with non-negative off-diagonal elements and that the sum of the elements in any row (or column) is zero.

3. Ground state energy

In order to study the ground state energy of the system we make use of the following theorem.

Theorem. Let \boldsymbol{A} be a real, symmetric matrix of dimension n whose elements $a_{i j}$ satisfy the following conditions:

$$
\begin{array}{ll}
a_{i j} \geqslant 0 & \text { if } i \neq j \\
\sum_{j=1}^{n} a_{i j}=0 & \text { for all } i . \tag{21}
\end{array}
$$

Then the largest eigenvalue of \boldsymbol{A} is zero. The vector $\hat{x}=n^{-1 / 2}(1,1, \ldots, 1)$ is an eigenvector (not necessarily unique) of \boldsymbol{A} corresponding to the eigenvalue zero.

Proof. The maximum eigenvalue of A is equal to the greatest value which the quadratic form

$$
\begin{equation*}
A(x, x) \equiv \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \tag{22}
\end{equation*}
$$

can take subject to the condition

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{2}=1 \tag{23}
\end{equation*}
$$

Furthermore the unit vector \hat{x} which gives this maximum is the corresponding eigenvectort. Equation (22) can be rewritten in the identical form

$$
\begin{equation*}
A(x, x)=-\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}\left(x_{i}-x_{j}\right)^{2}+\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}\left(x_{i}^{2}+x_{j}^{2}\right) . \tag{24}
\end{equation*}
$$

It follows directly from equation (21) together with the fact that $a_{i j}=a_{j i}$ that the last sum in this equation is zero whence we have

$$
\begin{equation*}
A(x, x)=-\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}\left(x_{i}-x_{j}\right)^{2}=-\sum_{i>j} a_{i j}\left(x_{i}-x_{j}\right)^{2} \tag{25}
\end{equation*}
$$

Hence from equation (20) we have the result

$$
\begin{equation*}
A(x, x) \leqslant 0 . \tag{26}
\end{equation*}
$$

If $x_{i}=x_{j}$ for all i, j, we have that $A(x, x)=0$ which by equation (26) is the maximum value of $A(x, x)$. By the normalization condition (equation (23)) the vector $x=n^{-1 / 2}(1,1, \ldots, 1)$ is the eigenfunction corresponding to the eigenvalue zero. Note however that this eigenfunction is not necessarily the only eigenfunction corresponding to eigenvalue zero since depending upon what the $a_{i j}$ are, this eigenvalue zero may be degenerate.

The matrix $\langle\phi| \widetilde{\mathscr{P}}\left|\phi^{\prime}\right\rangle$ satisfies all the requirements of this theorem whence we conclude that its largest eigenvalue is zero and one possible state associated with this eigenvalue is proportional to $\Sigma_{\phi \in S(Q, M)}|\phi\rangle$.

Let $\left|Q, M, \psi_{i}\right\rangle$ denote the eigenstates of $\widetilde{\mathscr{P}}$ in the Q, M subspace associated with the eigenvalue $\lambda_{\psi_{i}} \leqslant 0$. Here i takes on the values $1,2, \ldots,|S(Q, M)|$ where $|S(Q, M)|$ is the number of elements in the set $S(Q, M)$. In particular

$$
\begin{equation*}
\left|Q, M, \psi_{1}\right\rangle \equiv|S(Q, M)|^{-1 / 2} \sum_{\phi \in S(Q, M)}|\phi\rangle \tag{27}
\end{equation*}
$$

denotes the eigenfunction corresponding to the maximum eigenvalue $\lambda_{\psi_{1}}=0$. In other words we have

$$
\begin{align*}
& \left(\sum_{i=1}^{N} S_{i z}\right)\left|Q, M, \psi_{i}\right\rangle=M\left|Q, M, \psi_{i}\right\rangle \tag{28}\\
& \left(\sum_{i=1}^{N} S_{i z}^{2}\right)\left|Q, M, \psi_{i}\right\rangle=Q\left|Q, M, \psi_{i}\right\rangle \tag{29}\\
& \tilde{\mathscr{P}}\left|Q, M, \psi_{i}\right\rangle=\lambda_{\psi_{i}}\left|Q, M, \psi_{i}\right\rangle . \tag{30}
\end{align*}
$$

Hence $\left|Q, M, \psi_{i}\right\rangle$ is an eigenstate of \mathscr{H} with eigenvalue

$$
\begin{equation*}
E\left(Q, M, \psi_{i}\right\rangle=-\lambda_{\psi_{i}}-g \mu_{\mathrm{B}} H M+D Q \tag{31}
\end{equation*}
$$

In particular we have

$$
\begin{equation*}
E\left(Q, M, \psi_{1}\right)=-g \mu_{\mathrm{B}} H M+D Q \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(Q, M, \psi_{i}\right) \geqslant E\left(Q, M, \psi_{1}\right) . \tag{33}
\end{equation*}
$$

[^0]Thus far our results have been valid for general S. Let us now for concreteness restrict our attention to the case $S=1$ (where $\left.P_{i j}=-1+\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}+\left(\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}\right)^{2}\right)$. The number of elements in the set $S(Q, M)$ is then just

$$
\begin{equation*}
|S(Q, M)|=\binom{N}{Q}\binom{Q}{\frac{1}{2}(Q+M)} \tag{34}
\end{equation*}
$$

Q can take the values $0,1,2, \ldots, N$ and M the values $-Q,-Q+2, \ldots, Q-2, Q$ for fixed Q. Alternatively M can take the values $-N, \ldots, N$ and Q the values $|M|,|M|+2, \ldots, N$ or $N-1$ for fixed M. In terms of the $|\phi\rangle=\left|\left\{m_{i}\right\}\right\rangle$ notation we have

$$
\begin{align*}
& \left|0,0, \psi_{1}\right\rangle=|0,0,0, \ldots, 0\rangle \\
& \left|N, N, \psi_{1}\right\rangle=|1,1,1, \ldots, 1\rangle \\
& \left|N,-N, \psi_{1}\right\rangle=|-1,-1,-1, \ldots,-1\rangle \\
& \left|1,1, \psi_{1}\right\rangle=N^{-1 / 2}(|1,0,0, \ldots, 0\rangle+|0,1,0, \ldots, 0\rangle+|0,0,1,0, \ldots, 0\rangle \\
& +\ldots+|0,0,0, \ldots, 0,1\rangle) \tag{35}
\end{align*}
$$

and so on. For this case we have

$$
\begin{align*}
& E\left(0,0, \psi_{1}\right)=0 \\
& E\left(N, N, \psi_{1}\right)=\left(D-g \mu_{\mathrm{B}} H\right) N \tag{36}
\end{align*}
$$

and so on. It then follows from equations (32) and (33) that

$$
\begin{equation*}
E\left(Q, M, \psi_{i}\right) \geqslant E\left(Q, M, \psi_{1}\right)=-g \mu_{\mathrm{B}} H M+D Q . \tag{37}
\end{equation*}
$$

The equality may hold for several ψ_{i} other than $i=1$ due to the possible degeneracy of the eigenvalue zero of $\widetilde{\mathscr{P}}$. Let us consider equation (37) for the following situations.
(i) $D>g \mu_{\mathrm{B}} H>0$. Then
$E\left(Q, M, \psi_{i}\right) \geqslant-g \mu_{\mathrm{B}} H M+D Q=\left(-g \mu_{\mathrm{B}} H+D\right) Q+g \mu_{\mathrm{B}} H(Q-M) \geqslant Q\left(D-g \mu_{\mathrm{B}} H\right) \geqslant 0$.

Hence

$$
\begin{equation*}
E\left(Q, M, \psi_{i}\right) \geqslant E\left(0,0, \psi_{1}\right)=0 \tag{39}
\end{equation*}
$$

with equality holding only when $\left|Q, M, \psi_{i}\right\rangle=\left|0,0, \psi_{1}\right\rangle$ and there is no degeneracy in the ground state.
(ii) $g \mu_{\mathrm{B}} H>0, D<g \mu_{\mathrm{B}} H$. Then

$$
\begin{align*}
E\left(Q, M, \psi_{i}\right) & \geqslant-g \mu_{\mathrm{B}} H M+D Q \\
& \geqslant D Q-g \mu_{\mathrm{B}} H Q=Q\left(D-g \mu_{\mathrm{B}} H\right) \\
& \geqslant-\left(g \mu_{\mathrm{B}} H-D\right) N=E\left(N, N, \psi_{1}\right) . \tag{40}
\end{align*}
$$

Therefore

$$
\begin{equation*}
E\left(Q, M, \psi_{i}\right) \geqslant E\left(N, N, \psi_{1}\right)=\left(D-g \mu_{\mathrm{B}} H\right) N \tag{41}
\end{equation*}
$$

with equality holding only when $\left|Q, M, \psi_{i}\right\rangle=\left|N, N, \psi_{1}\right\rangle$ and there is no degeneracy in the ground state.
(iii) If $H<0$, similar arguments lead to the unique ground state $\left|0,0, \psi_{1}\right\rangle$ for $D>g \mu_{\mathrm{B}}|H|$ and $\left|N,-N, \psi_{1}\right\rangle$ for $D<g \mu_{\mathrm{B}}|H|$.

4. Conclusion

When $T=0$ the free energy per particle, f, is equal to the ground state energy per particle. In this case the magnetization m and quadrupolar order parameter x become

$$
\begin{equation*}
m \equiv \frac{1}{N}\left\langle\sum_{i} S_{i z}\right\rangle=\langle 0| \frac{1}{N} \sum_{i} S_{i z}|0\rangle \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
x \equiv \frac{1}{N}\left\langle\sum_{i} S_{i z}^{2}\right\rangle=\langle 0| \frac{1}{N} \sum_{i} S_{i z}^{2}|0\rangle \tag{43}
\end{equation*}
$$

where the symbol $|0\rangle$ means we consider the non-degenerate ground state. Hence for $S=1$ we have from the results of the previous section that:
(i) $D>g \mu_{\mathrm{B}}|H|$

$$
\begin{equation*}
f=0, \quad m=x=0 \tag{44}
\end{equation*}
$$

since the ground state is just $|0,0, \ldots, 0\rangle$.
(ii) $D<g \mu_{\mathrm{B}}|H|$

$$
\begin{equation*}
f=-N\left(g \mu_{\mathrm{B}}|H|-D\right), \quad m=\frac{H}{|H|}, \quad x=1 \tag{45}
\end{equation*}
$$

since the ground state is $|1,1, \ldots, 1\rangle$ for $H>0$ and $|-1,-1, \ldots,-1\rangle$ for $H<0$. If $D=g \mu_{\mathrm{B}}|H|$ there is a possible degeneracy in the ground state, so that no simple result holds for the values of x and m. However, for this situation it follows directly that $x=|m|$ since $E\left(Q, M, \psi_{i}\right) \geqslant 0$ with equality holding only when $Q=M$ for $H>0$, $Q=-M$ for $H<0$.

Acknowledgments

One of us (RIJ) wishes to thank the John Simon Guggenhiem Memorial Foundation for the award of a fellowship during which time the present work was done.

References

Kim D and Joseph R I 1973a Phys. Lett. 43A 439-40

- 1973b Phys. Lett. 44A 75-6
_- 1974 J. Phys. A: Math., Nucl. Gen. 7 301-7
Schrödinger E 1941 Proc. R. Irish Acad. 47 39-52

[^0]: † For a proof of this statement see for example Courant R and Hilbert D 1953 Methods of Mathematical Physics vol 1 (New York and London: Interscience) pp 23-7.

