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Ground state properties of the Schrodinger 
model of ferromagnetism 

D Kim? and R I Joseph? 
Department of Physics, King’s College, University of London, Strand, London WCZR 2LS, 
UK 

Received 4 July 1973 

Abstract. We consider a system described by the hamiltonian 

where P,,  is the spin S Schrodinger exchange operator, H is an external magnetic field and 
D the single-ion anisotropy constant, and study its ground state properties. In particular for 
S = 1 at T = 0 we find that the magnetization m = 0 for D > g1,lHI while for D < gF,lH(. 
m = H/IHI, the ground states being non-degenerate. 

1. Introduction 

Consider a system of N spin S particles on a lattice characterized by the hamiltonian 

where 
N N 

The latter two terms represent the Zeeman and single-ion anisotropy contributions, 
respectively. Let 14) = lm,mz..  . m N )  = I (mi))  be a normalized state such that 

mi can take on the values - S ,  . . . , S. We define a permutation operator pr by 

Prl4) = lPr4) E 14’) (4) 

where pr+ means that the permutation p,. is performed on a sequence 4 = {mi )  to give 
the new sequence 4’ = {mi ) .  We take for the operator XEx the specific form 

where Sy denotes the set of all permutations such that p: = I.  If Pij denotes the 
t On leave from the Department of Electrical Engineering, The Johns Hopkins University, Baltimore, 
Maryland. 
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Schrodinger exchange operator (Schrodinger 1941) for spin S which permutes the spin 
states of the two spins i and j ,  equation ( 5 )  is equivalent to the form 

If we were to set 

J . .  I J  = J if i , j  are nearest neighbours 

= o  otherwise 

. ’  J . .  l J k l  = 0 . .  

then % reduces to the previously studied Schrodinger model of ferromagnetism (Kim 
and Joseph 1973a, b, 1974). In general Pij is a polynomial of degree 2s in Si . Sj: 

The purpose of the present paper is to study rigorously the ground state ( T  = 0) 
properties of the system described by equations (I), ( 2 )  and (5 ) .  In Q 2 general properties 
of the matrix $ are studied while in 5 3 these properties are used to consider the ground 
state energy of the system. In Q 4 we conclude by showing for the case S = 1 that the 
magnetization m = ( X i  Si,)/N and quadrupolar order parameter x = (Ei S i ) / N  are 
related by x = Im/. In particular for D > gpBl/HI, m = x = 0 while for D < g&l/H1, 
Im( = x = 1. For these situations the ground state is non-degenerate. When D = gpBIH( 
no simple result is obtained due to a possible degeneracy in the ground state. 

2. Matrix elements of 8’ 

By its definition, pr changes the configuration (mi )  into the new configuration {mi)  
but it preserves the quantities Xi mi and Xi m?. Hence we have 

so that the hamiltonian commutes with both Ci Si, and X i  SL, 

Q = Xi m?. We then have 
Let S(Q, M )  be the finite set of all the #I = {mi)  with the constraints M = Ci  mi, 

i 
when #I E S(Q,  M ) .  

CS;l#I> = QI4) 
i 

(7) 

Furthermore we have that 

only when #I, #I’ both belong to the same set S(Q, M )  since prl#I) = 14’) E S(Q, M )  if 
14) tS(Q, M )  for any p r .  Consequently we may restrict our attention to the quantities 
(#I’lP14) where both 4 E S(Q,  M )  and 4’ E S(Q, M).  
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Now if 4 # 4' we have 

But (4'1~~4) = 1 if pJ4) = I+'), otherwise it is zero. Hence we immediately have the 
result 

(4' Iw+ 2 0 if 4' # 4. (10) 

Consider now the quantity Pij XbeS(Q,M)  14) where Pij  is any transposition (i , j) .  
Suppose that 4 E S(Q, M )  and let Pij14) 14'). Then 4' E S(Q, M) also. Furthermore 
we see that Pijl$') = P$4) = 14). Here 4' and 4 may or may not be the same depending 
upon whether mi and mj are the same or not. Therefore we can always regroup the 
quantity C4eS(Q,M) 14) into the form 

where q ! ~ ~  denotes those 14) which remain unchanged under the Pij operator and 
142) = Pij141) with 41 # 42.  Applying the operator Pij to this form we see that 

Now any pr can be decomposed into products of the transpositions, e.g. equation (6), 
and for each of these transpositions, equation (12) holds. Hence we have 

Pr 1 14) = 1 14) 
OeS(Q,M)  $eS(Q,M)  

or upon performing the sum pr E SN and using the definition of the operator @, 

"(meEl) 19)) = O. 

This immediately gives us the result 

C (4'1414) = o for all 4' 
4 4 Q M  

We know that 

and that 
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But since pf = Z we have 

Hence we find that 

ifprl4) = 14’) 
otherwise. 

Therefore 

Hence we see that (4J1814’) is a real, symmetric, finite (with dimension equal to the 
number of elements in S(Q,  M ) )  matrix with non-negative off-diagonal elements and 
that the sum of the elements in any row (or column) is zero. 

3. Ground state energy 

In order to study the ground state energy of the system we make use of the following 
theorem. 

Theorem. Let A be a real, symmetric matrix of dimension n whose elements aij satisfy 
the following conditions : 

aij 2 0 i f i # j  (20) 
n 

1 aij = 0 for all i. 
j =  1 

Then the largest eigenvalue of A is zero. The vector II = n- ’”(1, 1,. . . , 1) is an eigen- 
vector (not necessarily unique) of A corresponding to the eigenvalue zero. 

Proof. The maximum eigenvalue of A is equal to the greatest value which the quadratic 
form 

n 

A ( x , x )  = 1 Ui jXiXj  (22)  
i , j =  1 

can take subject to the condition 

2 xi’ = 1. 
i =  1 
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Furthermore the unit vector 9 which gives this maximum is the corresponding eigen- 
vector?. Equation (22) can be rewritten in the identical form 

n n 

A(x,  x )  = -4 1 a i j ( x i - x j ) 2 + )  1 a, j (xz+x;) .  
i , j =  1 i , j =  1 

I t  follows directly from equation (21) together with the fact that aij = aji that the last 
sum in this equation is zero whence we have 

(25) 
n A ( x ,  x )  = -3 c a i j ( x i - x j ) 2  = - 1 a i j ( x i - x j )  2 . 

A ( x , x )  < 0. (26)  

i . j =  1 i > j  

Hence from equation (20) we have the result 

If x i  = x j  for all i , j ,  we have that A(x,  x )  = 0 which by equation (26)  is the maximum 
value of A ( x , x ) .  By the normalization condition (equation (23)) the vector 
x = n-’l2(l, 1 , .  . , , 1) is the eigenfunction corresponding to the eigenvalue zero. Note 
however that this eigenfunction is not necessarily the only eigenfunction corresponding 
to eigenvalue zero since depending upon what the ai j  are, this eigenvalue zero may be 
degenerate. 

The matrix (41$\@) satisfies all the requirements of this theorem whence we 
conclude that its largest eigenvalue is zero and one possible state associated with this 
eigenvalue is proportional to ZbES.Q,M) 14). 

Let IQ, M ,  t,hi) denote the eigenstates of @ in the Q, M subspace associated with the 
eigenvalue A@i  < 0. Here i takes on the values 1 ,2 , .  . . , IS(Q, M)I where IS(Q, M)I is the 
number of elements in the set S(Q, M ) .  In particular 

denotes the eigenfunction corresponding to the maximum eigenvalue A*l = 0. In other 
words we have 

and 

f For a proof of this statement see for example Courant R and Hilbert D 1953 Methods of Mathematical 
Physics vol 1 (New York and London: Interscience) pp 23-7. 
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Thus far our results have been valid for general S .  Let us now for concreteness 
restrict our attention to the case S = 1 (where Pij = - 1 + S i .  Sj+(Si. Sj)'). The 
number of elements in the set S(Q, M )  is then just 

Q can take the values 0,1,2,. . . , Nand M the values - Q, - Q + 2, . . . , Q - 2, Q for fixed Q. 
Alternatively M can take the values - N, . . . , N and Q the values IMI, IMI + 2, .  . . , N 
or N - 1 for fixed M .  In terms of the 14) = I ( m i ) )  notation we have 

IO, 0, $1) = IO, o,o,. . . 3 0 )  

IN, N, $1) = I1,1,1,. . . 
IN, - N , $ I )  = 1-1, -1, -1,. . . ,  -1) 

11, 1,$1) = N-"'(Il, 0, 0, .  . .,0)+10, 1,0, .  . . ,O)+lO,O, 1, 0 , .  . . ,O)  

+ . . .  +IO,O,O,. . . , o ,  1)) 

E(O,O, $1) = 0 

and so on. For this case we have 

E ( N ,  N, $1) = ( D  - gPBH)N 
and so on. It then follows from equations (32) and (33) that 

(35) 

(36) 

E(Q, M ,  $i )  2 E(Q, M ,  $1) = -gPBHM+DQ. (37) 
The equality may hold for several $i other than i = 1 due to the possible degeneracy of 
the eigenvalue zero of B. Let us consider equation (37) for the following situations. 

(1) D > gpBH > 0. Then 

E(Q,M,$i) 2 -gpBHM+DQ = (-g/J-BH+D)Q+gC(BH(Q-M) 2 Q(D-gpBH) 2 0. 

(38) 

(39) 
with equality holding only when IQ, M ,  $ i )  = IO, 0, $1) and there is no degeneracy in 
the ground state. 

Hence 

E(Q, M ,  $i) 2 E(O, 0, $1) = 0 

(ii) gpBH > 0 , D  < gpBH. Then 

E(Q, M ,  $i) 2 -gpBHM + DQ 

E(Q, M ,  $i) 2 E(N, N, $1) = (D-gpBH)N (41) 

and there is no degeneracy 

(iii) If H < 0, similar arguments lead to the unique ground state (O,O, t,b1) for 

with equality holding only when IQ, M ,  t,hi) = IN, N ,  
in the ground state. 

D > gpBlHI and IN, - N ,  $1) for D < gpBlHI. 
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4. Conclusion 

When T = 0 the free energy per particle, f, is equal to the ground state energy per 
particle. In this case the magnetization m and quadrupolar order parameter x become 

and 

where the symbol 10) means we consider the non-degenerate ground state. Hence for 
S = 1 we have from the results of the previous section that : 

(i) D > gpBlH1 

f = 0, m = x = O  (44) 
since the ground state is just IO, 0,. . . , O ) .  

(ii) < gpBIHI 

(45) 
H 

m = -  x = l  
IHI ' 

f = - N(gpBIHI - D)? 

since the ground state is I l , l , .  . . , 1) for H > 0 and I - 1, - 1,. . . , - 1) for H < 0. I f  
D = gpBIHl there is a possible degeneracy in the ground state, so that no simple result 
holds for the values of x and m. However, for this situation it follows directly that 
x = ImJ since E(Q, M ,  1,9~) 2 0 with equality holding only when Q = M for H > 0, 
Q =  - M f o r H < O .  
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